Mark schemes

Q1.

$$
\text { amount of } \mathrm{CaS}=\frac{\frac{2.50}{72.2}=0.0346 \mathrm{~mol}}{\text { M1: amount of } \mathrm{CaS}}
$$

$$
\begin{aligned}
& \text { amount of } \mathrm{CaSO}_{4}=\frac{9.85}{136.2}=0.0723 \mathrm{~mol} \\
& M 2: \text { amount of } \mathrm{CaSO}_{4}
\end{aligned}
$$

3 mol of CaSO_{4} needed for each mol of CaS , and $\mathrm{n}\left(\mathrm{CaSO}_{4}\right)$ is not $3 \times n(\mathrm{CaO})$ (so CaSO_{4} is the limiting reagent)

M3: limiting reagent justification

$$
\begin{aligned}
& \mathrm{n}\left(\mathrm{SO}_{2}\right)= \mathrm{n}\left(\mathrm{CaSO}_{4}\right) \times \frac{4}{3}=0.0964 \mathrm{~mol} \\
& M 4: \text { moles of } \mathrm{CaSO}_{4} \times 4 / 3
\end{aligned}
$$

$$
\text { mass of } \begin{aligned}
\mathrm{SO}_{2}=\mathrm{n} & \left(\mathrm{SO}_{2}\right) \times 64.1=6.18 \mathrm{~g} \\
& M 5: M 4 \times 64.1 \\
& \text { If CaS used as limiting reagent then allow M4 and } \\
& M 5 \text { ecf. } \\
& \text { Must look for M1 and M3 }
\end{aligned}
$$

Q2.
(a) M1: Mean titre $=\frac{20.25+20.30}{2}=20.275 \mathrm{~cm}^{3}$

Allow M1 $=20.28 \mathrm{~cm}^{3}$

M2 Amount of $\mathrm{NaOH}=0.35 \times(20.275 \div 1000)=0.00709625 \mathrm{~mol}$
Amount of ethanoic acid in $25 \mathrm{~cm}^{3}=0.00709625 \mathrm{~mol}$

$$
M 2=M 1 \times 10^{-3} \times 0.35
$$

M3 Amount of ethanoic acid in $200 \mathrm{~cm}^{3}=0.05677 \mathrm{~mol}$

$$
M 3=M 2 \times 8
$$

M4 Mass of ethanoic acid in sample $=60.0 \times 0.05677=3.4062 \mathrm{~g}$

$$
M 4=M 3 \times 60.0
$$

M5 Mass of sodium ethanoate $=5.6-3.4062=2.1938 \mathrm{~g}$

$$
M 5=5.6-M 4
$$

M6 percentage $\mathrm{CH}_{3} \mathrm{COONa}=(2.1938 \div 5.6) \times 100=39.1 \%$
$M 6=(M 5 \div 5.6) \times 100$
(39.1-39.2)

Accept alternative methods
M5 $=($ M4 $\div 5.6) \times 100)$ followed by $M 6=100-M 5$ 1
(b) M1 Titre value would increase / larger value

M2 Because the sodium hydroxide solution would be more dilute

Q3.
(a) METHOD 1

Stage 1

M1 $n=\frac{P V}{R T}$

M2 converting P to 51.0×10^{3}, V to 482×10^{-6}

M3 $\frac{51.0 \times 10^{3} \times 482 \times 10^{-6}}{8.31 \times 297}(=0.00996)$

Stage 2

M4 converting mass to 0.717

M5 $\quad \mathrm{M}_{\mathrm{r}}\left(=\frac{\text { mass }}{\text { moles }}\right)=\frac{\text { M4 }}{\text { M3 }}=72.0$ (at least 2 sf)

METHOD 2

M1 $n=\frac{P V}{R T}$
M2 $\quad M_{r}=\frac{m R T}{P V}$
M3 converting P to 51.0×10^{3}, V to 482×10^{-6}

M4 converting mass to 0.717
M5 $\quad \mathrm{M}_{\mathrm{r}}=\left(\frac{0.717 \times 8.31 \times 297}{51.0 \times 10^{3} \times 482 \times 10^{-6}}\right)=72.0$ (at least 2 sf)
Both methods:
72.0 can be achieved with incorrect working and may not score because individual steps need to be assessed as correct
72.0 with no working scores no marks

If expression not written out, M1 could score from a substituted correct expression later on (even if any unit conversions are incorrect)
METHOD 1

- ECF from M2 to M3
- ECF from M3 to M4
- ECF from M4 to M5
- Ignore units for M3

METHOD 2

- ECF from M3 to M4
- ECF from M2 to M4
- ECF from M4 to M5
(b) M1 amount of CO_{2} formed in flask $=0.008 \mathrm{~mol}$

Allow ECF from M1 to M2

M2 amount of gas in flask
$=0.0075\left(\mathrm{O}_{2}\right)+0.0080(\mathbf{M 1})=0.0155 \mathrm{~mol}$

Q4.
C

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

Q5.
B
1.74×10^{-2}

Q6.
C
51.1\%

Q7.
C

$$
1.47
$$

Q8.
B
ethanol

Q9.
(a) M1 $\mathrm{n}=\mathrm{pV} / \mathrm{RT}$

M1 for rearrangement
$\mathrm{n}=\frac{100000 \times(178 / 1000000)}{8.31 \times(273+120)}$
M2 for three unit conversions
M3 $\mathrm{n}=5.45 \times 10^{-3} \mathrm{~mol}$
$M_{r}=$ mass $/ \mathrm{mol}$ or $0.460 / 5.45 \times 10^{-3}$
M3 for calculating the amount in moles of A
M4 $M_{r}=\underline{84.4}$ Answer must be to 3 sig.fig.
M4: 0.460 / M3 given to 3sf
(b) Calculated Mr value would be greater than actual

Mr = mass / moles so dividing by too small a value of moles gives a larger Mr than expected.

A lower volume would have been recorded / mass evaporated less than mass of liquid / lower moles calculated / mass recorded higher than mass of gas / mass recorded would be too high

M2 dependent on correct M1
(c) \% uncertainty $=($ uncertainty $/$ mass added $) \times 100$
$=((2 \times 0.001) / 0.460\} \times 100=0.435 \%$

Q10.

Percentage yield

M1 reactant moles $=^{\frac{1.00}{116.0}}(=0.00862)$

Correct M3 scores M1-3

Numerical answers to at least 2sf
Allow ECF in M1-M3

M2 product moles $=^{\frac{0.552}{72.0}}(=0.00767)$
Alternative for M2/3
M2 expected mass of product $=0.00862 \times 72.0$ (= 0.621 g)

M3 \% yield $=^{\frac{0.00767}{0.00862}}=88.9(3)$ or 89%
Alternative for M2/3
M3 \% yield $\left.=0^{\frac{0.552}{0.621}} \times 100\right)=88.9(3)$ or 89%

M4 idea of getting as much product as possible in the reaction / idea of efficient conversion of reactants to products

Atom economy

M5 $\left(\frac{72.0}{74.0+34.0} \times 100\right)=\left(\frac{72.0}{108.0} \times 100\right)=66.7 \%$
Alternative for M5: $\left(\frac{72.0}{72.0+36.0} \times 100\right)$

M6 idea of maximising the mass of reactants / atoms that ends up in desired product or idea of minimising the amount of by-products

Q11.
(a) M1 $\quad \mathrm{n}\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2}\right)=33.50 \times 0.100 \div 1000=\underline{0.00335}$

M2 $n\left(I_{2}\right)=0.00335 \div \mathbf{2}=0.001675$ (from eqn 2)

$$
M 2=M 1 \div 2
$$

M3 n (CIO-) in $25 \mathrm{~cm}^{3}$ pipette $=0.001675($ from eqn 1$)$
M3 = M2

M4 $n\left(\mathrm{ClO}^{-}\right)$in $100 \mathrm{~cm}^{3}$ flask $=0.001675 \underline{\mathbf{x} 4}=0.00670=n(\mathrm{NaClO})$ in original $10 \mathrm{~cm}^{3}$ sample

$$
\text { M4 }=\mathbf{M 3} \times 4
$$

M5 mass $(\mathrm{NaClO})=0.00670 \times 74.5=0.499 \mathrm{~g}$
M5 = M4 $\underline{x} 74.5$

M6 mass $($ bleach $)=10.0 \times 1.20=\underline{12} \mathrm{~g}$
M6 = mass of bleach

M7 \% by mass of $\mathrm{NaClO}=\frac{\frac{0.499}{12}}{=}=4.16 \%$
M7 = (M5 \div M6) $\times 100$ to 3 significant figures
Allow 4.15% to 4.17%
(b) 0.45%
[8]

Q12.
C

Q13.
A

$$
2.28 \times 10^{-18} \mathrm{~J}
$$

Q14.
(a) $\mathrm{Mr} \mathrm{NaF}_{\mathrm{r}}=42(.0)$

Incorrect M_{r} loses M1 \& M4

Mass NaF in $1 \mathrm{~g}=2.88 \times 10^{-5} \times 42.0\left(=1.210(1.2096) \times 10^{-3} \mathrm{~g}\right)$

Mass NaF in $1 \mathrm{~kg}=1.210(1.2096) \mathrm{g}$
$M 3=M 2 \times 1000(g)$
Units, if given, must match answer
(Mass in $\mathrm{mg}=1210$ (1209.6) mg)
Concentration of $\mathrm{NaF}=\underline{1210}$ (ppm)
Allow $1.21 \times 10^{3} \mathrm{ppm}$
(b) Toxic mass $=3.19 \times 10^{-2} \times 75 \times 1000$
$=2390 \mathrm{mg}$
Allow 2393
(c) Mass of toothpaste needed $=\frac{2390}{2800}$

$$
=0.854 \mathrm{~kg}
$$

Mark consequential to (b)
(b) $\div 2800$ (to at least 2 sig fig)

Allow $0.85-0.86 \mathrm{~kg}$
(d) B

If not B, allow M2 only
If blank, read on.

Both Na^{+}and F^{-}same electron arrangement ($1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$) or isoelectronic Electronegativity, molecules or IMF = CE, M1 only

Sodium (ion) has more protons so attracts (outer) electrons closer /
Sodium (ion) has more protons so stronger attractions for (outer) electrons
Ignore shielding, higher charge density, atomic radius
If reference to fluorine rather than fluoride, then penalise 1 mark only

Q15.
(a) M1: Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.57 \mathrm{~g}$ AND Mass $\mathrm{H}_{2} \mathrm{O}=0.55 \mathrm{~g}$

If incorrect masses other than AE, lose M1 \& M3

M2: $\mathrm{Mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \frac{-0.57}{106}$ AND Mol $\mathrm{H}_{2} \mathrm{O}=\frac{0.55}{18}$
M2 = process

M3: $=0.0054: 0.0306$
M3 = these values only (at least 2sf)

M4: \div by smallest $=1: 5.682$
M4 = process mark

M5: Value of $x=5.68$ (2dp)
Allow 5.67-5.74

OR
M1: Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.57 \mathrm{~g}$ AND Mass $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=1.12 \mathrm{~g}$

M2: Moles anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.57}{106}=5.377 \times 10^{-3}$

M3: Mr of hydrated $\mathrm{Na}_{2} \mathrm{CO}_{3}=1.12 / 5.377 \times 10^{-3}$

$$
=208.3
$$

M4: Mr of $\times \mathrm{H}_{2} \mathrm{O}=102.3$

M5: Value of $x=5.68$ (2dp)
Allow 5.67-5.74
(b) Failure to drive off all the water

OR
Failure to heat for long enough
OR
Not heated to constant mass
Allow evaporate instead of drive off Ignore incomplete reaction
(c) Heat to constant mass / heat for longer / use a smaller mass

You can be sure all / more of the water has been driven off Ignore incomplete reaction M2 dependent on M1

Q16.
(weighted) average masses of atoms in formula
(a) The sum of $1 / 12$ mass of an atom of ${ }^{12} \mathrm{C}$

Average mass of one molecule
$1 / 12$ mass of an atom of ${ }^{12} \mathrm{C}$

Method 1

Method 2
Mass of $\mathrm{Y}=0.21 \mathrm{~g}$

Mass of $Y=0.21 \mathrm{~g}$
If incorrect lose M5 also, unless AE

$$
M_{\mathrm{r}}=\frac{m R T}{p V} \quad \mathrm{n}=\frac{p V}{R T} \text { and } M_{\mathrm{r}}=\frac{m}{n}
$$

Can be implied in calculations

$$
M_{\mathrm{r}}=\frac{0.21 \times 8.31 \times 371.1}{102000 \times 85 \times 10^{-6}} \quad \begin{aligned}
& \mathrm{n}=\frac{102000 \times 85 \times 10^{-6}}{8.31 \times 371.1} \\
& \left.10^{-3}\right)
\end{aligned}(=2.81 \times
$$

M4 - awarded for all 3 unit conversions

$$
M_{\mathrm{r}}=74.7
$$

Allow 75
(b) Lower volume recorded

Allow

$$
M_{\mathrm{r}}=74.7
$$

(Evaporated) mass of gas is less than the recorded mass of liquid / 0.21g (or converse)

Mr would be greater (than the real Mr_{r})

Ignore other references to mass

Q17.
C

Q18.
Q18.
D

Q19.

(a) use of water would dilute the NaOH OR use of water would change the concentration of NaOH OR to ensure the concentration of the NaOH is not changed OR

> Ignore reference to weakening the solution, watering down the solution, contaminate Allow it would gives a titre value that is larger it would decrease the pH of the NaOH (any additional qualifying reason given must be correct)
(b) Rough $=25.2,1=23.90,2=23.70,3=24.00$.

Need all four (with rough to $1 d p$ and the other three to 2dp)
(c) M1 use of titrations $1 \& 3$ only

M1 is for choosing correct titres

M2 $23.95\left(\mathrm{~cm}^{3}\right)$
M2 is for calculating the mean to 2dp for their chosen titres
$24.0 \mathrm{~cm}^{3}=1$ mark (wrong number of decimal places)
$24 \mathrm{~cm}^{3}=1$ mark (only if it is clear that titration 2 is not included)
$23.86 \mathrm{~cm}^{3}=1$ mark (used all three titrations) $23.9 \mathrm{~cm}^{3}=0$ marks (used all three titrations and wrong number of decimal places)
If error(s) made in 2.2, allow ECF from 2.2, where they choose concordant titres and find the mean (can score M1 and M2)

1
(d) $\left.\quad{ }^{\frac{0.15}{23.95}} \times 100\right)=0.63 \%$
(0.6263\%)

Allow any correct value with at least 2 significant figures based on their answer to 2.3. Rounding must be correct.
(e) $\mathbf{M 1}$ moles $\mathrm{NaOH}=\frac{\frac{23.95}{1000}}{} \times 0.0500(=0.001198)$

M2 moles acid in flask $=^{\frac{\text { M1 }}{3}} \times 10(=0.003992)$

M3 mass acid ($=0.003992 \times 192.0=0.766 \mathrm{~g})=766(\mathrm{mg})$
Correct answer to at least 2 sf $=3$ marks (allow 760770 mg)
Correct value in grams (lose M3) $=2$ marks (allow $0.76-0.77 \mathrm{~g}$)
Allow ECF at each stage (including those based on value from 2.3)
Incorrect answers that are a factor of 10 too small lose M2 ($76-77 \mathrm{mg}=2$ marks, $0.076-0.077 \mathrm{~g}=1$ mark)
(if use $25 \mathrm{~cm}^{3}$ for volume of NaOH , then max 2 marks (M2 and M3 for 800 mg)

Answer to Q (e)

Allow any correct value to at least 2 significant figures based on their answer to $Q(e)$ (values may be over 100% if 2.5 is incorrect)

Q20.

M1 HCl added $=\underline{0.050} \mathrm{~mol}$ and
NaOH used in titration $=\underline{3.99 \times 10^{-3}} \mathrm{~mol}$

M2 So moles that would be needed to neutralise total excess
$\mathrm{HCl}=3.99 \times 10^{-3} \times 10=3.99 \times 10^{-2} \mathrm{~mol}$
Alternative: divide moles HCl by $10=0.005$ and $0.005-3.99 \times 10^{-3}=0.00101$

M3 Therefore the moles of HCl reacted with the $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=$ $0.050-3.99 \times 10^{-2}=0.0101 \mathrm{~mol}$

Alternative: 0.00101×10 to produce 0.0101

M4 So moles $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ reacted with the $\mathrm{HCl}=0.0101 / 2=5.05 \mathrm{x}$ $10^{-3} \mathrm{~mol}$

M5 Conversion of mg to $\mathrm{g}=0.627(\mathrm{~g})$ or $627 \times 10^{-3}(\mathrm{~g})$

M6 $\mathrm{xH}_{2} \mathrm{O}=0.627 / 5.05 \times 10^{-3}-106.0=18(.16)$
Alternative: mass Na 2 CO 3 that reacted with the $\mathrm{HCl} 5.05 \times 10^{-3} \mathrm{x} 106.0=0.5353 \mathrm{~g}$ and mass $\mathrm{H}_{2} \mathrm{O}=$ $0.627-0.5353=0.0917 \mathrm{~g}$

M7 so $x=1$
Alternative: $0.0917 / 18.0=5.094 \times 10^{-3}$ so ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to $\mathrm{H}_{2} \mathrm{O}=1: 1.009$ ie $1: 1$ so $x=1$

Q21.
(a) $4 \mathrm{CuFeS}_{2}+9^{\frac{1}{2}}$
$\mathrm{O}_{2}+4 \mathrm{SiO}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Cu}_{2} \mathrm{O}+7 \mathrm{SO}_{2}+4 \mathrm{FeSiO}_{3}$
Allow multiples
$\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(b) ANY TWO

- Prevents acid rain (which damages buidlings / ecology)
- Toxic OR causes breathing problems
- Reduces waste product OR makes use of the waste OR improves atom economy OR Reduces need for sulfur mining OR used to produce sulfuric acid OR any named products
(c) M1, M2, M3 are process marks

M1 Mol Cu $=\frac{450 \times 1000}{63.5}(=63780)$
M2 Mass $\mathrm{CuFeS}_{2}=(63780) \times 183.5\left(=1.17 \times 10^{7} \mathrm{~g}\right)$
M3 Mass ore $=(1.17 \times 107) \times \frac{100}{1.25}$
M4 Mass ore = 936 tonnes (Allow 936-937)

Alternative method

$\mathrm{M} 1 \%$ of Cu in $\mathrm{CuFeS}_{2}=(63.5 / 183.5) \times 100=34.6 \%$
$\mathrm{M} 2 \%$ of Cu in the rock $=(34.6 / 100) \times 1.25=0.4325 \%$
M3 mass of rock $=4050 \times 100 / 0.4325=936416 \mathrm{~kg}$
M4 mass of rock in tonnes $=936$ tonnes
Notes
M1 Ar Cu must be used
M2 $\mathrm{Mr}_{\mathrm{r}} \mathrm{CuFeS}_{2}$ to have been used
M3 Grossing up for the mass of rock
M4 Final answer correct in tonnes
(d) $\%$ atom economy $=\frac{(2 \times 63.5)}{171} \times 100$
$=74.3 \%$ must be 3sf

Q22.
D

Q23.
B

Q24.
(a) Stage 1

M1 $n=\frac{P V}{R T}$

M2 $=\frac{102 \times 10^{3} \times 72 \times 10^{-6}}{8.31 \times 373}$

M3 $=0.0024 / 0.00237 / 0.002369 / 0.0023693$.

Stage 2

M4 $\quad M_{\mathrm{r}}\left(=\frac{\text { mass }}{\text { moles }}\right)=\frac{0.194}{\text { M3 }}$

M5 $=82$ ($\underline{\text { sf only }}$)
As this is an extended response question, each separate step of correct working is required in M1M5
Correct answer with no working scores 2 marks M1 - If expression not written out, M1 could score from a correct expression for M2 (even if unit conversions are not correct for M2)
M2 - allow an expression that gives correct value for M3
M3 should be at least 2sf (do not allow 0.0023 but do allow 0.00236)
M4 must show 0.194 or 194×10^{-3} in working to score
M5 must be 2sf
ECF:

- No ECF within either stage 1 or stage 2 (except for transcription errors)
- Allow ECF from stage 1 into stage 2, i.e for M4 and M5 based on incorrect M3, (but if expression for M4 is inverted, cannot score M5)
- (Note that if 72×10^{-3} used in M2, then $\mathbf{M 3}=$ 2.4, $\boldsymbol{M} 5=0.082$)

Ignore units for M3 and M5
Note that if $T=273+373=646, M 5=140(2 s f)$
(b) M1 dividing \%s by relative atomic masses
$\mathrm{C}=83.7 / 12(.0), \mathrm{H}=16.3 / 1(.0)$
M2 converting ($\mathrm{C}: \mathrm{H} 6.975$: 16.3) to $3: 7$
M3 empirical formula $=\mathrm{C}_{3} \mathrm{H}_{7}$
M4 molecular formula $=\mathrm{C}_{6} \mathrm{H}_{14}$

M1 \& M2 are for working
M3 for $\mathrm{C}_{3} \mathrm{H}_{7}$ only, marked independently
M4 for $\mathrm{C}_{6} \mathrm{H}_{14}$ only, marked independently (ignore additional correct structures)
Formulae with no working cannot score M1 or M2
Alternative method:

M1 working that shows 83.7% of 86 is 72
M2 idea of 72/12 gives 6 C atoms
Alternative method:
working that shows that $\mathrm{C}_{6} \mathrm{H}_{14}$ (or $\mathrm{C}_{3} \mathrm{H}_{7}$) contains
83.7\% C scores M1 \& M2

Q25.
(a) M1 Amount $\mathrm{NaOH}=0.02530 \times 0.500=0.01265 \mathrm{~mol}$

567-590 = 4 marks
0.567-0.590 = 3 marks

M2 Amount acid $=0.006325 \mathrm{~mol}$ (i.e. $\mathbf{M 1} \div 2$)
Allow ECF at each stage
M3 $\quad \mathrm{Mr}_{\mathrm{r}}=90$ (.0)
M3 can be scored from use of value of 90(.0) within working

M4 mass acid = 569 (mg) (allow 567 to 576) (i.e. M2 \times M3 in mg)
M4 should be to at least $2 s f$. Any individual marks for M1/2/3 should be to at least 2sf (or 90 for M3)

1134-1180 = 3 marks (due to not dividing moles of NaOH by 2)
1.134-1.180 = 2 marks (due to not dividing moles of NaOH by 2 and not converting to mg)
(b) Idea that it ensures all ethanedioic acid / acid / sodium hydroxide / alkali / reactants are in the mixture / solution / reaction or the idea that some of the ethanedioic acid / acid / sodium hydroxide / alkali / reactants would be on the sides of the flask
the idea that it is the transfer of all the acid/alkali alone is not enough
(c) Titres that are within $0.1 \mathrm{~cm}^{3}$ of each other

Units are needed
Allow 0.05-0.15 cm ${ }^{3}$
Do not allow idea of identical results
Allow answers that refer to titres that are within the uncertainty of the burette/apparatus of each other

Q26.
(a) Mass of $\mathbf{X}=0.270$

Volume of $\mathbf{X}=105.0$

Both must be correct
(b) $\quad \mathrm{pV}=\mathrm{nRT}$
$\frac{100000 \times 105 / 1000000}{8.31 \times 370}=n$
$\mathrm{n}=3.41 \times 10^{-3}$
$M_{r}={ }^{\mathrm{mass}} / \mathrm{mol}$ or $0.270 / 3.41 \times 10^{-3}$
$M_{r}=79.1$

Identity of $\mathbf{X}=\mathrm{CH}_{2} \mathrm{Cl}_{2}$
If $M_{r}=52$ used, allow $\mathrm{CH}_{3} \mathrm{Cl}$
(c) M1 The volume of the gas in the syringe (V) is greater than the true volume (because some air leaked into the syringe)

If the Mr_{r} value of 52 is used and $\mathrm{CH}_{3} \mathrm{Cl}$ is identified in 01.2:

M2 $\mathrm{Mr}_{\mathrm{r}}=\mathrm{m} / \mathrm{n}=\mathrm{m} \times \mathrm{RT} / \mathrm{PV}$ so if V is too large, Mr_{r} is too small
OR
M1 The temperature measured (T) is less than the temperature of the gas in the syringe (because the syringe heated faster than the oven and the oven temperature was not constant)

M2 $M_{r}=\mathrm{m} / \mathrm{n}=\mathrm{m} \times \mathrm{RT} / \mathrm{PV}$ so if T is too small, M_{r} is too small
OR
M1 The measured mass of liquid transferred to the syringe (m) is less than the actual mass transferred

M2 $M_{r}=m / n=m \times R T / P V$ so if m is too small, M_{r} is too small M1 The volume of the gas in the syringe (V) is less than the true volume (because not all the liquid vaporised in the syringe)
M2 $M_{r}=m / n=m \times R T / P V$ so if V is too small, M_{r} is too large
OR
M1 The temperature measured (T) is greater than the temperature of the gas in the syringe (because the syringe heated more slowly than the
thermometer and the oven temperature was not constant)
M2 $M_{r}=m / n=m \times R T / P V$ so if T is too large, M_{r} is too large
OR
M1 The measured mass of liquid transferred to the syringe (m) is greater than the actual mass transferred
M2 $M_{r}=m / n=m \times R T / P V$ so if m is too large, M_{r} is too large
(d) Carry out in a fume cupboard

Do not allow safety glasses / labcoat

To avoid toxic vapour

Q27.
D

